Phương trình phản ứng C2H4+H2 ra C2H6

Phản ứng oxi-hoá khử

Thông tin chi tiết phương trình

Phương trình

C2H4+H2 ra C2H6

Điều kiện phản ứng

Nhiệt độ Dung môi Áp xuất Chất xúc tác Điều kiện khác
Nhiệt độ Ni Không có Không có Không có

Cách thực hiện

cho C2H4 tác dụng với hidro

Hiện tượng xuất hiện

không có

Loại Phản ứng

Oxi hóa - khừ (hóa hợp).

Ứng dụng

Chưa có thông tin

Các chất phản ứng liên quan

Chất C2H4 Chất H2

Các chất sản phẩm liên quan

Chất C2H6

Tin tức thú vị

C2H4
etilen (eten)

Chất Hữu Cơ Hợp Chất

1. Phản ứng công nghiệp chủ yếu của ethylene bao gồm theo thứ tự quy mô: 1) trùng hợp , 2) quá trình oxy hóa , 3) halogen hóa và hydrohalogenation , 4) alkyl hóa , 5) hydrat hóa , 6) oligomerization , và 7) hydroformylation . Tại Hoa Kỳ và Châu Âu , khoảng 90% ethylene được sử dụng để sản xuất ethylene oxide , ethylene dichloride , ethylbenzene và polyethylen . Hầu hết các phản ứng với ethylene là bổ sung điện di . Sử dụng công nghiệp chính của ethylene. Theo chiều kim đồng hồ từ phía trên bên phải: chuyển đổi thành ethylene oxide , tiền thân của ethylene glycol; thành ethylbenzene , tiền chất của styren ; đến các loại polyetylen ; để ethylene dichloride , tiền chất của vinyl clorua . 2. Polyme hóa Polyetylen tiêu thụ hơn một nửa nguồn cung ethylene trên thế giới. Polyetylen, còn được gọi là polyethene và polythene , là loại nhựa được sử dụng rộng rãi nhất trên thế giới. Nó chủ yếu được sử dụng để làm phim trong bao bì , túi xách hãng và thùng rác lót . Alpha-olefin tuyến tính , được sản xuất bởi oligome hóa (hình thành các polyme ngắn) được sử dụng làm tiền chất , chất tẩy rửa , chất hóa dẻo , chất bôi trơn tổng hợp , chất phụ gia, và cũng là chất đồng trùng hợp trong sản xuất polyethylen. 3. Oxy hóa Ethylene được oxy hóa để sản xuất ethylene oxide , một nguyên liệu chính trong sản xuất chất hoạt động bề mặt và chất tẩy rửa bằng ethoxylation . Ethylene oxide cũng được thủy phân để sản xuất ethylene glycol , được sử dụng rộng rãi như một chất chống đông ô tô cũng như glycols có trọng lượng phân tử cao hơn, ethers glycol và polyethylen terephthalate . Ethylene trải qua quá trình oxy hóa bằng paladi để tạo ra acetaldehyd . Chuyển đổi này vẫn là một quá trình công nghiệp chính (10 triệu kg / năm). Quá trình tiến hành thông qua sự tạo phức ban đầu của ethylene đến trung tâm Pd (II). 4. Phản ứng halogen hóa và hydro hóa Các chất trung gian chính từ quá trình halogen hóa và hydro hóa ethylene bao gồm ethylene dichloride , ethyl clorua và ethylene dibromide . Việc bổ sung clo đòi hỏi "oxychlorination", tức là bản thân clo không được sử dụng. Một số sản phẩm có nguồn gốc từ nhóm này là polyvinyl clorua , trichloroethylen , perchloroen , metyl cloroform , polyvinylidene clorua và copolyme và ethyl bromide . 5. Kiềm hóa Các chất trung gian hóa học chính từ quá trình alkyl hóa với ethylene là ethylbenzene , tiền chất của styren . Styrene được sử dụng chủ yếu trong polystyrene để đóng gói và cách nhiệt, cũng như cao su styrene-butadien cho lốp xe và giày dép. Ở quy mô nhỏ hơn, ethyltoluene , ethylanilines, 1,4-hexadiene và nhôm alkyl. Sản phẩm của các chất trung gian này bao gồm polystyrene , polyesters không bão hòa và terpolyme ethylene-propylene . 6. Phản ứng oxo Các hydroformylation (phản ứng oxo) kết quả etylen trong PROPANAL , tiền thân của axit propionic và n-propyl alcohol . 7. Hydrat hóa Ethylene từ lâu đã đại diện cho tiền chất không gây dị ứng chính cho ethanol . Phương pháp ban đầu đòi hỏi phải chuyển đổi thành dietyl sulfat , sau đó là thủy phân. Phương pháp chính được thực hiện từ giữa những năm 1990 là hydrat hóa trực tiếp ethylene được xúc tác bởi các chất xúc tác axit rắn : C 2 H 4 + H 2 O → CH 3 CH 2 OH Dimerization to butenes Ethylene được dimerized bởi hydrovinylation để cung cấp cho n -butenes sử dụng các quy trình được cấp phép bởi Lummus hoặc IFP . Quá trình Lummus tạo ra hỗn hợp n -butenes (chủ yếu là 2 buten ) trong khi quy trình IFP tạo ra 1-butene . 1-Butene được sử dụng như một nhà phân tích trong sản xuất một số loại polyetylen . 8. Quả và hoa Ethylene là một loại hormone ảnh hưởng đến quá trình chín và ra hoa của nhiều loại cây. Nó được sử dụng rộng rãi để kiểm soát độ tươi trong trồng trọt và trái cây . 9. Niche sử dụng Một ví dụ về việc sử dụng thích hợp là một tác nhân gây mê (theo tỷ lệ 85% ethylene / 15% oxy). [15] Các công dụng khác là đẩy nhanh quá trình chín của trái cây và làm khí hàn.

Cách đọc tên chất C2H4

H2
hidro

Đơn chất Nguyên Tố Chu Kỳ 1 Nhóm Nguyên Tố IA Nhóm Nguyên Tố VIIA Nguyên Tố Bảng Tuần Hoàn

Một số người coi khí hydro là nhiên liệu sạch của tương lai - được tạo ra từ nước và trở lại nước khi nó bị oxy hóa. Pin nhiên liệu chạy bằng hydro ngày càng được coi là nguồn năng lượng 'không gây ô nhiễm' và hiện đang được sử dụng trong một số xe buýt và ô tô. Hydro còn có nhiều công dụng khác. Trong công nghiệp hóa chất, nó được sử dụng để sản xuất amoniac cho phân bón nông nghiệp (quy trình Haber) và xyclohexan và metanol, là những chất trung gian trong sản xuất nhựa và dược phẩm. Nó cũng được sử dụng để loại bỏ lưu huỳnh khỏi nhiên liệu trong quá trình lọc dầu. Một lượng lớn hydro được sử dụng để hydro hóa dầu để tạo thành chất béo, ví dụ như để sản xuất bơ thực vật. Trong công nghiệp thủy tinh, hydro được sử dụng làm khí bảo vệ để chế tạo các tấm thủy tinh phẳng. Trong ngành công nghiệp điện tử, nó được sử dụng làm khí xả trong quá trình sản xuất chip silicon. Mật độ hydro thấp khiến nó trở thành sự lựa chọn tự nhiên cho một trong những ứng dụng thực tế đầu tiên của nó - làm đầy khí cầu và khí cầu. Tuy nhiên, nó phản ứng mạnh mẽ với oxy (để tạo thành nước) và tương lai của nó trong việc lấp đầy khí cầu đã kết thúc khi khí cầu Hindenburg bốc cháy.

Cách đọc tên chất H2

Tin tức bạn có thể bỏ lỡ

C2H6
etan

Chất Hữu Cơ Hợp Chất

Etan là nguyên liệu thô quan trọng cho công nghiệp hóa dầu và là nguồn nhiên liệu quan trọng nhất của kinh tế thế giới. Các nguyên liệu ban đầu cho gia công chế biến là khí thiên nhiên và dầu thô. Dầu thô được tách ra tại các nhà máy lọc dầu bằng cách chưng cất phân đoạn và sau đó được chế biến thành các sản phẩm khác nhau, ví dụ xăng. Sự "phân đoạn" khác nhau của dầu thô có các điểm sôi khác nhau và có thể cô lập và tách bóc rất dễ dàng: với các phân đoạn khác nhau thì các chất có điểm sôi gần nhau sẽ bay hơi cùng với nhau. Sử dụng chủ yếu của một ankan nào đó có thể xác định hoàn toàn phù hợp với số nguyên tử cacbon trong nó, mặc dù sự phân chia ranh giới dưới đây là đã lý tưởng hóa và chưa thực sự hoàn hảo. Bốn ankan đầu tiên được sử dụng chủ yếu để cung cấp nhiệt cho các mục đích sưởi ấm và nấu ăn, và trong một số quốc gia còn để chạy máy phát điện. Metan và etan là các thành phần chủ yếu của khí thiên nhiên; chúng thông thường được lưu trữ như là khí nén. Tuy nhiên, rất dễ dàng chuyển chúng sang dạng lỏng: điều này đòi hỏi đồng thời việc nén và làm lạnh khí. Propan và butan có thể hóa lỏng ở áp suất tương đối thấp, và chúng được biết dưới tên gọi khí hóa lỏng (viết tắt trong tiếng Anh là LPG). Ví dụ, prôpan được sử dụng trong các lò nung khí propan còn butan thì trong các bật lửa sử dụng một lần (ở đây áp suất chỉ khoảng 2 barơ). Cả hai ankan này được sử dụng làm tác nhân đẩy trong các bình xịt. Từ pentan tới octan thì ankan là các chất lỏng dễ bay hơi. Chúng được sử dụng làm nhiên liệu trong các động cơ đốt trong, do chúng dễ hóa hơi khi đi vào trong khoang đốt mà không tạo ra các giọt nhỏ có thể làm hư hại tính đồng nhất của sự cháy. Các ankan mạch nhánh được ưa chuộng hơn, do chúng có sự bắt cháy muộn hơn so với các ankan mạch thẳng tương ứng (sự bắt cháy sớm là nguyên nhân sinh ra các tiếng nổ lọc xọc trong động cơ và dễ làm hư hại động cơ). Xu hướng bắt cháy sớm được đo bằng chỉ số octan của nhiên liệu, trong đó 2,2,4-trimêtylpentan (isooctan) có giá trị quy định ngẫu hứng là 100 còn heptan có giá trị bằng 0. Bên cạnh việc sử dụng như là nguồn nhiên liệu thì các ankan này còn là dung môi tốt cho các chất không phân cực. Các ankan từ nonan tới ví dụ là hexadecan (ankan với mạch chứa 16 nguyên tử cacbon) là các chất lỏng có độ nhớt cao, ít phù hợp cho mục đích sử dụng như là xăng. Ngược lại, chúng tạo ra thành phần chủ yếu của dầu diesel (điêzen) và nhiên liệu hàng không. Các nhiên liệu điêzen được đánh giá theo chỉ số cetan (cetan là tên gọi cũ của hexadecan). Tuy nhiên, điểm nóng chảy cao của các ankan này có thể sinh ra các vấn đề ở nhiệt độ thấp và tại các vùng gần cực Trái Đất, khi đó nhiên liệu trở nên đặc quánh hơn và sự truyền dẫn của chúng không được đảm bảo chuẩn xác. Các ankan từ hexadecan trở lên tạo ra thành phần quan trọng nhất của các loại chất đốt trong các lò đốt và dầu bôi trơn. Ở chức năng sau thì chúng làm việc như là các chất chống gỉ do bản chất không ưa nước của chúng làm cho nước không thể tiếp xúc với bề mặt kim loại. Nhiều ankan rắn được sử dụng như là parafin, ví dụ trong các loại nến. Không nên nhầm lẫn parafin với sáp thực sự (ví dụ sáp ong) chủ yếu là hỗn hợp của các este. Các ankan với độ dài mạch cacbon khoảng từ 35 trở lên được tìm thấy trong bitum, được sử dụng chủ yếu trong nhựa đường để rải đường. Tuy nhiên, các ankan có mạch cacbon lớn có ít giá trị thương mại và thông thường hay được tách ra thành các ankan mạch ngắn hơn thông qua phương pháp crackinh.

Cách đọc tên chất C2H6

Liên Kết Chia Sẻ

** Đây là liên kết chia sẻ bới cộng đồng người dùng, chúng tôi không chịu trách nhiệm gì về nội dung của các thông tin này. Nếu có liên kết nào không phù hợp xin hãy báo cho admin.

Loading…